PAP: Dla osób, które nie są fizykami, mechanizmy rządzące światem kwantowym mogą się wydawać sprzeczne z intuicją. Cząstki mogą być w superpozycji, a więc być nie w jednym miejscu naraz albo mogą być splątane i "komunikować się" na odległość... Czy są rzeczy w fizyce kwantowej, których pan, światowej klasy ekspert, ciągle nie rozumie, nie potrafi sobie wyobrazić, w które nie może pan uwierzyć?

Prof. Anton Zeilinger: Ciągle nie wiemy, dlaczego w przyrodzie jest mechanika kwantowa. Co innego jest z teorią względności Alberta Einsteina. Ona bazuje na tym, że prawa fizyki są w różnych miejscach takie same. I u nas, którzy siedzimy w miejscu, i w pociągu, który się szybko porusza. A w mechanice kwantowej nie mamy takiej zasady. Nie rozumiemy, skąd właściwie ta mechanika się wzięła. Chociaż nie mamy wątpliwości, że ona prawidłowo opisuje świat. Przeprowadzono już pewnie miliony doświadczeń, które potwierdzają słuszność mechaniki kwantowej. Poza tym na odkryciach mechaniki kwantowej bazują działające już urządzenia - np. półprzewodniki czy układy w telefonach.

Czytaj więcej: PENTAKWARK - NOWA CZĄSTKA ELEMENTARNA

Jaka filozofia kryje się za fizyką kwantową. W końcu mechanika kwantowa różni się od tego, co widzimy na co dzień, od rzeczywistości, której doświadczamy. Czy pana podejście do świata, myślenie o rzeczywistości zmieniło się pod wpływem przemyśleń na temat mechaniki kwantowej?

Według mnie są dwie ważne sprawy. Najważniejszą konsekwencją, jaka wiąże się z mechaniką kwantową, jest to, że nie można zakładać, że system kwantowy ma właściwości, zanim dokona się jego obserwacji, zanim dokona się na nim pomiarów. Jeśli więc zaobserwuję cząstkę, która propaguje się w przestrzeni i znajdę ją w jakimś miejscu, nieprawidłowe jest założenie, że cząstka była tam, zanim ją zaobserwowałem. Nieprawidłowym jest w ogóle zakładanie, że cząstka była w jakimś zdefiniowanym miejscu, zanim się ją zmierzyło.

Czyli co, ta cząstka była nigdzie? Czy może nie było tej cząstki?

Nasz codzienny język sobie z tym nie radzi. Błędnym jest spodziewać się, że cząstka była w konkretnym miejscu. Niektórzy mówią, że cząstka była "rozmazana" w przestrzeni. Ale cząstka nie wie, gdzie jest i nikt tego nie wie. Jest niezdefiniowana. Spodziewanie się, że ona "gdzieś była" jest mylne. Tak samo, jak mylne jednak jest również zakładanie, że jej "nigdzie nie było".

A cząstki się zmieniają, kiedy je zaobserwujemy?

Stany kwantowe się zmieniają. A stan kwantowy to reprezentacja informacji, którą mamy. Ale mówienie, że cząstka się zmienia, jest znowu nieodpowiednim językiem. Jeśli powie się, że cząstka się zmienia, to zakłada się, że cząstka miała wcześniej zdefiniowane właściwości. A to jest błędne założenie.

Kolejną ciekawą konsekwencją jest to, że mechanika kwantowa uświadamia nam w nowy sposób, czym jest przypadkowość. Załóżmy, że ma się radioaktywny atom, który ulega rozpadowi. To, kiedy ten atom się rozpadnie, jest jednak przypadkowe. Nie można więc wyjaśnić, dlaczego atom rozpada się w danym momencie. Nie ma tu przyczyny. W codziennym życiu spodziewamy się, że dla wszystkiego, co zachodzi, jest przyczyna, powód. Ale pojedyncze zdarzenia w świecie kwantowym nie mają przyczyny. Tylko dla wielu cząstek razem jest przyczyna. Ale nie dla pojedynczych. I to nie jest tak, że nie znamy przyczyny. Tej przyczyny po prostu nie ma.

Czytaj więcej: