​Jeśli przyjmiemy, że to światło może docierać do nas różnymi drogami o różnej długości, jest całkiem możliwe, że patrząc w północnym kierunku nocnego nieba, zobaczymy galaktykę X, gdy miała 2 mld lat, zerkając na południe – gdy miała 3 mld, a na zachód, gdy dopiero rozbłyskała. Tyle teoria. W praktyce nie mamy pojęcia, czy wpatrując się w różne obszary nieba, widzimy za każdym razem inne galaktyki, czy część z nich to te same, tylko w innym stadium rozwoju. Nie mamy nawet pomysłu, jak to sprawdzić. Gdyby jednak jakoś się nam udało, określenie kształtu wszechświata i zakrzywienia przestrzeni wymagałoby tylko komputera o dużej mocy obliczeniowej. Wtedy astronomowie „wrzucaliby” do niego informacje, które galaktyki widzą podwójnie albo potrójnie, w jakim one są wieku i z jakiego kierunku nadlatuje wyemitowane przez nie światło.

Odpowiedni program powinien poradzić sobie z wyliczeniem zakrzywienia przestrzeni czy inaczej – kształtu wszechświata. Inaczej bowiem będą układały się obrazy galaktyk, gdy kosmos będzie kulą, a inaczej, gdy będzie stożkiem czy torusem. W badaniu mikrofalowego promieniowania tła chodzi dokładnie o to samo. Trudno wyobrazić sobie sytuację, w której przestrzeń zmienia swój kształt (zakrzywienie) w czasie. Kształt, jaki został nadany wszechświatowi w pierwszych ułamkach sekund po Wielkim Wybuchu, jest prawdopodobnie tym samym kształtem, który ma dzisiaj. Stąd tak dużą wagę kosmologowie przywiązują do analizy mikrofalowego promieniowania tła. Chcą na tym zdjęciu niemowlęcego wszechświata zobaczyć odbicia, regularności albo nieregularności charakterystyczne dla ugiętej przestrzeni. 

Świat nieeuklidesowy

W kosmologii niewiele rzeczy można zrozumieć, uruchamiając naszą ziemską intuicję. Podobnie jest zresztą w fizyce cząstek elementarnych. Niektórzy potrafią jednak intuicję w jakiś sposób zagłuszyć. A może ich intuicja działa na wyższych poziomach? Takie zagadnienia jak Wielki Wybuch czy rozszerzanie się przestrzeni można jeszcze próbować sobie wyobrazić, ale kształt przestrzeni – już nie bardzo. Tymczasem nie da się zrozumieć konstrukcji wszechświata bez odpowiedzi na pytanie o cechy przestrzeni, którą wypełnia. Bez tego nie sposób dowiedzieć się, jaka była jego przeszłość i jaka będzie przyszłość.

W naszej skali przestrzeń jest płaska jak kartka papieru. Podobnie jak w skali naszego najbliższego otoczenia płaska jest także Ziemia. Dwie linie równoległe zawsze będą w takich warunkach równoległe, a suma kątów w trójkącie zawsze będzie wynosiła 180 stopni. To podstawy tzw. geometrii euklidesowej. Jednak na wygiętej kartce, w zakrzywionej przestrzeni nic już nie jest takie jednoznaczne. Dwie linie proste i równoległe mogą się rozjechać albo skrzyżować. Wzory na pola figur czy zależności geometryczne, których dzieci uczą się w pierwszych klasach szkoły, przestają być prawdziwe. Nieprawdziwe staje się twierdzenie Pitagorasa!

Jaki więc jest nasz świat? Gdy patrzymy na niego z bliska, jest euklidesowy, płaski. Ale gdyby spojrzeć na niego z większej odległości, staje się zakrzywiony. Szkoda, że na razie nie wiadomo, jak się zakrzywia i w którą stronę.

Odkrycie tej tajemnicy może mieć praktyczne zastosowanie. Jeżeli dwa punkty może w zakrzywionej, nieeuklidesowej przestrzeni łączyć kilka różnych linii prostych, to może nauczymy się kiedyś podróżować na duże odległości drogą na skróty, np. przez sam środek przykładowego walca. Gdyby tak się stało, moglibyśmy zacząć przygotowywać się do podróży międzygwiezdnych, a nawet międzygalaktycznych – bo okazałoby się, że odległości pomiędzy najdalszymi obiektami we wszechświecie wcale nie są takie duże.